
Lakshmi Mythri Dasari et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 4), July 2014, pp.29-31

 www.ijera.com 29 | P a g e

Loss less DNA Solidity Using Huffman and Arithmetic Coding

Lakshmi Mythri Dasari
#1

, Ch Srinivasu
#2

, Pathipati Srihari
#3

#1, #2

 Department of Electronics and Communication
#1,#2

Dadi Institute of Engineering and Technology,
#3

National Institute of Technology Karnataka

Abstract
DNA Sequences making up any bacterium comprise the blue print of that bacterium so that understanding and

analyzing different genes with in sequences has become an exceptionally significant mission. Naturalists are

manufacturing huge volumes of DNA Sequences every day that makes genome sequence catalogue emergent

exponentially. The data bases such as Gen-bank represents millions of DNA Sequences filling many thousands

of gigabytes workstation storing capability. Solidity of Genomic sequences can decrease the storage

requirements, and increase the broadcast speed. In this paper we compare two lossless solidity algorithms

(Huffman and Arithmetic coding). In Huffman coding, individual bases are coded and assigned a specific binary

number. But for Arithmetic coding entire DNA is coded in to a single fraction number and binary word is coded

to it. Solidity ratio is compared for both the methods and finally we conclude that arithmetic coding is the best.

Key words: DNA, Solidity, Huffman coding, Arithmetic Coding, Solidity Ratio.

I. Introduction
The solidity of DNA sequences is one of the

most challenging tasks in the field of data solidity.

Since DNA sequences are the code of life. We expect

them to be non-random and to present some

regularity. It is natural to try taking advantage of such

regularities in order compactly store the huge

databases which are routinely handled by molecular

biologists.

The amount of DNA being extracted from

organisms and sequenced is increasing exponentially.

This yields two problems a) storage b)

comprehension. Despite the prevalence of broad band

network connection, there still exists a need for

compact representation of data to speed up

transmission.

DNA is composed only from four chemicals

bases: Adenine (A), Thymine (T), Guanine (G), and

Cytosine (C). Human DNA consists of about 3 billion

bases and more than 99% of those bases are the same

in all people, the order of this base determines the

information available for building an organism.

The solidity of this huge amount of produced

DNA sequences is a very important and challenging

task.

II. Proposed Work
In this paper we compress the DNA sequence by

using Huffman and Arithmetic Coding.

a) Huffman Coding: The Huffman procedure is

based on two observations concerning optimum

prefix codes.

1. In an optimum code, symbols that occur more

frequently will have shorter code words than

symbols that occur less frequently.

2. In an optimum code, the two symbols that occur

least frequently will have same length.

The method stars by building a list of all alphabet

symbols in descending order of their probabilities. It

then constructs a tree.

The tree is built by going through the following

steps.

1. Combine the two lowest frequencies

(probabilities) and continue this procedure.

2. Assign “0” to higher frequency (prob.) and “1” to

lower frequency (prob.) of each pair, or vice

versa.

3. Trace the path for each character frequency from

lower to upper point. Recording the ones and

zeros along the path.

4. Assign each character (message) codes

sequentially from right to left.

This is best illustrated by an example. Consider

DNA sequences AATAAAATAAAACAAAATTAA

AAGC whose length is 25.

.

Table I. Huffman coding Table

BAS

E

FREQUEN

CY

PROBABILI

TY

CODE

WORD

A 18 0.72 0

T 4 0.16 10

G 1 0.04 110

C 2 0.08 111

The number of bits required to represent the sequence

is 35 bits.

RESEARCH ARTICLE OPEN ACCESS

Lakshmi Mythri Dasari et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 4), July 2014, pp.29-31

 www.ijera.com 30 | P a g e

b) Arithmetic Coding: In Huffman code, every

symbol is assigned a code word. This problem is

overcome in arithmetic coding by assigning one

code to the entire input stream, instead of

assigning codes to the individual symbols. The

method reads the input stream symbol by symbol

and appends more bits to the code each time a

symbol is input and processed.

The algorithm for the arithmetic coding is given

below

1. Define an interval [0,1) which is closed at 0 and

open at 1.

2. Input the symbol “S” from the input stream.

3. Divide the interval into sub intervals proportional

to symbol probability by using the below

formulas

)(*)(xHighRangeOldLowOldHighOldLowNewHigh 

)(*)(xLowRangeOldLowOldHighOldLowNewLow 

4. Next subinterval is the main interval.

5. When all the symbols are coded, the final

output should be any fractional number that

uniquely identifies the interval which is known

as tag.

This represents the whole symbol sequence. The

tag is then represented in binary digits.

Minimum number of bits required to

represent the tag is given by

  















 1

1
log

2
SP

N

Where  SP is the probability of all symbols.

Consider the subsequence

AATAAAATAAAACAAAATTAAAAGC

Table II. Arithmetic Coding Table

BAS

E

FREQUEN

CY

PROBABILI

TY
RANGE

A 18 0.72 [0.28,1)

T 4 0.16
[0.12,0.2

8)

G 1 0.04
[0.08,0.1

2)

C 2 0.08 [0,0.08)

The coding values of the sequence are as follows:

A => [0, 0.08)

A=> [0.0224, 0.08)

T => [0.029312, 0.038528)

A=> [0.03189248, 0.038528)

A=> [0.033750425, 0.038528)

A=> [0.035088146, 0.038528)

A=> [0.036051305, 0.038528)

T=> [0.036348508, 0.036744779)

A=> [0.036459464, 0.036744779)

A=> [0.036539352, 0.036744779)

A=> [0.036516872, 0.036744779)

A=> [0.036638286, 0.036744779)

C=> [0.036638286, 0.036646806)

A=> [0.036640672, 0.036646806)

A=> [0.036642389, 0.036646806)

A=> [0.036643626, 0.036646806)

A=> [0.036644516, 0.036646806)

T=> [0.036644791, 0.036645157)

T=> [0.036644835, 0.036644893)

A=> [0.036644851, 0.036644893)

A=> [0.036644863, 0.036644893)

A=> [0.036644871, 0.036644893)

A=> [0.036644878, 0.036644893)

G=> [0.036644879, 0.036644879)

C=> [0.036644879, 0.036644879)

036644879.0
2

036644879.0036644879.0



Tag

Minimum number of bits required is 32.

Binary representation of 0.036644879 is

00000100101100001100011110000110.

From the above example, we can observe

that the number of bits encoded for arithmetic coding

is less.

III. Solidity Performance
 Several Quantities are commonly used to

express the performance of a solidity method.

1. Solidity Ratio:

nputstreamSizeofthei

mutputstreaSizeoftheo
CR 

A value of 0.6 means that the data occupies 60%

of its original size after solidity. Values greater than 1

mean an output stream bigger than the input stream

(negative solidity). The solidity ratio can also be

called bpb (bit per bit), since it equals the number of

bits in the compressed stream needed, on average, to

compress on bit in the input stream.

IV. Outputs
Different DNA samples are taken solidity is done

by two methods and are compared

Table III. Comparison Results

SL

No

Access

ion

Numb

er

Origi

nal

Size

(bits)

After

Solidity

Solidity

Ratio

Huff

man

Arit

hme

tic

Huff

man

Arit

hme

tic

1
AF348

515.1
17160 4198 4108

0.75

536

0.76

0606

2
AF007

546
17024 4256 4202 0.75

0.75

3055

3
AF008

216.1
5640 1410 1380 0.75

0.75

5319

4
AF186

607.1
10408 2602 2591 0.75

0.75

1057

Lakshmi Mythri Dasari et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 4), July 2014, pp.29-31

 www.ijera.com 31 | P a g e

Huffman and Arithmetic coding are applied on

DNA sequences. The results shows that solidity is

best achieved by Arithmetic coding rather than

Huffman coding. Which are developed by MATLAB

8.1.0.604 (R2013a) on a core i5 processor with a 4GB

of RAM.

V. Conclusion
The need for effective DNA solidity is evident in

biological applications where storage and

transmission of DNA are involved. Algorithm using

the concept of Huffman and Arithmetic coding is

proposed to compress DNA sequences. The Solidity

ratio of Huffman coding is less, as the algorithm

depends on the occurrence one of the elements with a

high probability and the result is a short length of bits

and this does not occur in DNA sequence. This is the

major limitations of using Huffman code to compress

DAN sequence.

Good Solidity ration can be achieved by using

adaptive methods, Dictionary learning method,

wavelet methods, soft evolutionary computing

methods etc.

References

[1] G. Manzini and M. Rastero “A Simple and

Fast DNA Solidity” February 17, 2004.

[2] H. Afify, M.Islam and M. Abdel wahedL.

“DNA LossLess Differential Solidity

Algorithm Based on similarity of genomic

sequence data base. (IJCSIT) Vol 3, No4,

August 2011.

[3] M. Burrows and D.J. Wheeler, "A Block

Sorting Lossless Data Solidity Algorithms",

Technical report124, Digital System

Research center, 1994.

[4] P. G. Howard and J. S. Vitter, “Analysis of

arithmetic coding for data solidity,”

Informat. Process. Manag., vol. 28, no. 6,

pp. 749-763, 1992.

[5] I. H. Witten, R. M. Neal, and J. G. Cleary,

“Arithmetic coding for data solidity,”

Commun. ACM, vol. 30, no. 6, pp. 520-540,

June 1987.

